publication
2024
principal component analysis in space forms
puoya tabaghi, michael khanzadeh, yusu wang, and sivash mirarab. ieee transactions on signal processing (tsp).
universal representation of permutation-invariant functions on vectors and tensors
puoya tabaghi and yusu wang. proceedings of the 35th international conference on algorithmic learning theory (alt).
de-hnn: an effective neural model for circuit netlist representation
zhishang luo, truong son hy, puoya tabaghi, michael defferrard, elahe rezaei, ryan carey, rhett davis, rajeev jain, and yusu wang. proceedings of the 27th international conference on artificial intelligence and statistics, pmlr 238:4258-4266.
learning ultrametric trees for optimal transport regressions
samantha chen, puoya tabaghi, and yusu wang. proceedings of the aaai conference on artificial intelligence, 38(18), 20657-20665.
optimal tree metric matching enables phylogenomic branch length reconciliation
shayesteh arasti, puoya tabaghi (equal contributions), yasamin tabatabaee, and siavash mirarab. research in computational molecular biology conference (recomb).
2021
highly scalable and provably accurate classification in poincare balls
eli chien, chao pan, puoya tabaghi, and olgica milenkovic. ieee international conference on data mining (icdm).
geometry of similarity comparisons
puoya tabaghi, jianhao peng, olgica milenkovic, and ivan dokmanic. arXiv preprint: 2006.09858.
on procrustes analysis in hyperbolic space
puoya tabaghi and ivan dokmanic. ieee signal processing letters.
linear classifiers in product space forms
puoya tabaghi, chao pan, eli chien, jianhao peng, and olgica milenkovic. submitted to journal of machine learning research learning (jmlr).
2020
2019
2015
|